Injectable 3D hydrogel scaffold with tailorable porosity post-implantation.
نویسندگان
چکیده
Since rates of tissue growth vary significantly between tissue types, and also between individuals due to differences in age, dietary intake, and lifestyle-related factors, engineering a scaffold system that is appropriate for personalized tissue engineering remains a significant challenge. In this study, a gelatin-hydroxyphenylpropionic acid/carboxylmethylcellulose-tyramine (Gtn-HPA/CMC-Tyr) porous hydrogel system that allows the pore structure of scaffolds to be altered in vivo after implantation is developed. Cross-linking of Gtn-HPA/CMC-Tyr hydrogels via horseradish peroxidase oxidative coupling is examined both in vitro and in vivo. Post-implantation, further alteration of the hydrogel structure is achieved by injecting cellulase enzyme to digest the CMC component of the scaffold; this treatment yields a structure with larger pores and higher porosity than hydrogels without cellulase injection. Using this approach, the pore sizes of scaffolds are altered in vivo from 32-87 μm to 74-181 μm in a user-controled manner. The hydrogel is biocompatible to COS-7 cells and has mechanical properties similar to those of soft tissues. The new hydrogel system developed in this work provides clinicians with the ability to tailor the structure of scaffolds post-implantation depending on the growth rate of a tissue or an individual's recovery rate, and could thus be ideal for personalized tissue engineering.
منابع مشابه
Biological self-assembly of injectable hydrogel as cell scaffold via specific nucleobase pairing.
A biological hydrogel was self-assembled via Watson-Crick base pairing of thymine and adenine from functionalized star poly(ethylene glycol). Our work should provide a novel methodology to generate robust injectable scaffolds with tailorable properties for biomedical applications.
متن کاملExploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel
Sericin, a major component of silk, has a long history of being discarded as a waste during silk processing. The value of sericin for tissue engineering is underestimated and its potential application in regenerative medicine has just begun to be explored. Here we report the successful fabrication and characterization of a covalently-crosslinked 3D pure sericin hydrogel for delivery of cells an...
متن کاملGenipin Cross-Linked Polyvinyl Alcohol-Gelatin Hydrogel for Bone Regeneration
Polyvinyl alcohol gelatin hydrogels were fabricated using genipin as a crosslinking agent for bone regeneration application. Optimized formulation of PVA-GE hydrogel was fabricated using genipin as crosslinking agent. Characterizations such as FTIR, morphology, porosity, pore size, degradation and swelling rate were investigated. Bone regeneration potential of optimized genipin cross-linked pol...
متن کاملCell infiltration into a 3D electrospun fiber and hydrogel hybrid scaffold implanted in the brain
Tissue engineering scaffolds are often designed without appropriate consideration for the translational potential of the material. Solid scaffolds implanted into central nervous system (CNS) tissue to promote regeneration may require tissue resection to accommodate implantation. Or alternatively, the solid scaffold may be cut or shaped to better fit an irregular injury geometry, but some featur...
متن کاملAn Injectable Nanofiber-Hydrogel Composite with Interfacial Bonding for Soft Tissue Filling and Regeneration.
INTRODUCTION: Restoration of acquired, congenital, or age-related soft tissue defects using autologous or implantable materials can cause donor site morbidity, infection, device failure, and fibrosis. Injectable fillers are limited by variable resorption and fat grafting causes necrosis in large volumes. An alternative approach using the body’s regenerative capacity and an injectable synthetic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Advanced healthcare materials
دوره 3 5 شماره
صفحات -
تاریخ انتشار 2014